第八十八章 物理学武术10(第2页)
因为每个人的基因都是独一无二的,特定蛋白质犹如专为个人打造的“超级装备”,能够精准地识别细胞损伤的类型和程度,就像拥有高精度扫描仪一样,不放过任何一个细微的损伤点。
组成蛋白质的基本单元叫氨基酸,而氨基酸的基本元件则是更简单的原子(碳c、氢h、氧o、氮n等)。
以最简单的氨基酸(甘氨酸)为例,它的分子式为chno,化学结构为a-氨基乙酸,是由2个碳+ 5个氢+ 2个氧+ 1个氮所直接组成。
换句话,简单地说,如果把生物体中的蛋白质比作一栋大楼,那氨基酸就相当于砖块,而组成砖块的“基本单元”则类似于泥土(原子)和烧制工艺(代谢途径)等。
说起人工化学合成蛋白质,早在1963年时,那时的生物医学人工化学合成蛋白质领域,主要依赖于固相肽合成法(spps)。
该技术主要是通过共价键将起始氨基酸的羧基端固定于不溶性树脂载体,形成可延伸的链起点,随后以氨基端为反应位点,在自动化合成仪的精密控制下,循环执行活化氨基酸的偶联反应与保护基团的脱除步骤。每个循环通过交替进行偶联-脱保护操作,逐步延伸多肽链长度,最终经纯化及体外折叠形成具有生物活性的功能蛋白质。
然而,传统的spps技术存在显着效率瓶颈。尽管自动化设备将单循环时间从2-6小时压缩至90分钟,但整体合成周期仍受多因素制约。
因为根据实验数据显示,合成时间与链长呈现非线性增长关系:10肽需2-3天,20肽需5-7天,50肽则长达2-3周。这种非线性效应源于长链合成过程中树脂载体空间位阻增大、反应位点可及性下降以及副反应概率提升等累积效应。
该技术另一固有局限在于长链合成能力。那就是当多肽链超过50个氨基酸残基时,树脂表面肽链密度过高会导致链间聚集,显着降低偶联效率。
尽管在1993年发展的自然化学连接法(ncl)通过肽硒酯替代策略实现了200肽以下的合成突破,但其前体多肽硫酯的制备需依赖boc-spps工艺,而该工艺必须使用强腐蚀性氢氟酸(hf)。hf的剧烈反应条件导致糖基化、磷酸化等翻译后修饰基团难以稳定存在,严重限制了修饰多肽的合成可行性。
这迫使研究者需在链长延伸与修饰保持之间做出权衡,成为制约ncl技术普适性的关键瓶颈。
直至2021年10月30日,一碳生物合成蛋白质技术横空出世。该技术生产的产品中蛋白质含量高达85,且氨基酸组成与天然蛋白质相似,可包含数百个氨基酸残基。
其技术原理,主要是利用特定微生物(如产氨棒杆菌、甲烷氧化菌等)的代谢途径,在特定条件下将一氧化碳和氨转化为氨基酸,再通过微生物自身的蛋白质合成机制形成蛋白质。该技术原料来源广泛(如工业尾气),合成周期在特定条件下可缩短至22秒左右。
彗星目前所采用的合成技术,就是在此原有基础技术上改良而来的全新promax版的合成技术。该技术能够将纯度提升至9989这一极高水平,且合成出的氨基酸组成与天然蛋白质几乎完全一致,成功实现了人工化学合成蛋白质领域从跟跑者到领跑者的划时代重大突破位置,堪称人工化学合成蛋白质领域的“超时空跃迁”。