译电者青灯轻剑斩黄泉

第787章 首次晶体管加密测试(第2页)

 

测试设备的配置形成历史闭环:1962 年的示波器用于捕捉加密波形,1966 年的频谱仪分析谐波成分,两者的校准基准都源自 1962 年国家计量院的 37 号标准信号源。陈恒特意保留的 1962 年手工绕制线圈,电感量误差≤0.37 微亨,在第 19 次失败后被证明是唯一能稳定工作的元件,“老东西的一致性反而更可靠”。

 

最关键的技术传承在加密算法:1966 年测试的 37 级迭代逻辑,其核心 19 级完全复用 1962 年真空管加密机的算法,只是将硬件实现从真空管换成晶体管,这种 “算法不变、硬件迭代” 的思路,在 1962 年的规划中被明确为 “风险最低路径”,尽管这意味着要容忍初期的低成功率。

 

二、19 次失败的技术解码:与 1962 年的故障对照

 

第 1 至 7 次失败集中在 “低温启动”,晶体管在 - 19c环境下的导通延迟达 37 微秒,远超 1962 年手册规定的 19 微秒上限。陈恒对比 1962 年的测试录像发现,1962 年的真空管在相同环境下虽启动慢但稳定,而晶体管的结电容会随温度骤降增大 19%,这个差异在 1962 年的理论分析中被提及,却未被年轻工程师重视。

 

第 8 至 15 次失败源于 “电磁干扰”,370 赫兹的核爆模拟信号会导致晶体管参数漂移 1.9%,而 1962 年的真空管仅漂移 0.37%。赵工在 1962 年的抗干扰手册第 19 页找到解决方案:增加 19 匝屏蔽线圈,这个改动使第 16 次测试的抗干扰能力提升 37%,虽未成功加密,但故障时间从 19 秒延长至 37 秒。

 

第 19 次失败最为关键:加密完成前的最后一个脉冲丢失,导致密钥校验失败。小李用 1962 年的脉冲示波器捕捉到异常,发现是 1962 年库存电容的充放电速度跟不上晶体管的开关速度,换用 1966 年的高频电容后,虽然成功率仍仅 0.37%,但首次实现完整加密流程。陈恒在故障树旁标注:“1962 年的元件瓶颈,恰是 1966 年的突破点”。

 

失败数据的统计呈现奇妙的历史呼应:19 次失败中,19% 源于元件老化(1962 年库存问题),37% 源于参数不匹配(新旧技术衔接问题),44% 源于环境适应(晶体管特性问题),这个分布与 1962 年预测的 “过渡期失败模型” 误差≤1%。赵工用 1962 年的算盘复算:0.37% 的成功率意味着每 1962 次测试成功 7 次,与 1962 年 “千分之三” 的乐观预期基本吻合。

 

三、团队博弈的心理轨迹:经验与革新的碰撞

 

小王在第 19 次失败后提出 “彻底抛弃 1962 年电路”,他设计的全新拓扑结构在模拟测试中成功率达 19%,但陈恒指出该方案未经过 1962 年核爆电磁环境验证,抗辐射性能未知。两人的争论在防空洞的岩壁上投下晃动的影子,小王的钢笔在 1962 年的规范上划出 19 道质疑线,而陈恒的回应始终围绕 1962 年的实战数据:“1962 年 37 小时通信中断的教训,不能用实验室数据抵消”。

 

赵工的调解沿用 1962 年的 “双轨测试法”:上午按 1962 年方案测试,下午尝试小王的新方案,两周的数据对比显示,旧方案在 37 种极端环境下的稳定性比新方案高 19 倍,尤其是核辐射环境下,新方案的失败率飙升至 37%。这个结果让小王沉默,他在笔记上抄下 1962 年总师的话:“稳定比先进更重要”,字迹的力度从 190 克逐渐降至 180 克,与陈恒的笔迹趋于一致。

 

团队的士气在第 19 次失败后降至谷底,小李发现 19 名测试人员的平均睡眠时间从 7 小时降至 3.7 小时,与 1962 年核爆前的疲劳数据完全相同。陈恒组织的 “技术复盘会” 复刻 1962 年的形式:每人用 19 分钟分析一次失败,最后汇总 19 条改进建议,其中第 7 条 “采用 1962 年温度补偿电路” 后来被证明是关键。

 

最微妙的心理转变发生在深夜测试:小王主动用 1962 年的方法调整基极偏置,当示波器显示加密脉冲稳定时,他的嘴角紧绷程度从 19 度降至 7 度。陈恒注意到,他的测试记录开始引用 1962 年的数据作为基准,这个细节比任何言语都更能说明技术认同的形成。

 

四、0.37% 成功率的技术逻辑:从失败中提取的稳定因子

 

0.37% 的成功率虽低,却包含三个关键稳定特征:在 37c环境下成功率达 3.7%(高温适应性)、使用 1962 年库存线圈时成功率 1.9%(元件兼容性)、加密第 19 级时的成功率 7%(核心算法可靠)。陈恒用 1962 年的统计方法分析,这些数据形成的 “稳定岛” 恰好覆盖 1962 年核爆加密的核心需求,证明技术路线的正确性。